A compilation on

High Modulus Polyethylene Fibers

(HMPE)

May 2010

Different Names

- HMPE (High modulus polyethylene)
- UHMWPE (Ultra high molecular weight polyethylene)
- UHMPE (Ultra high modulus polyethylene)
- HPPE (High performance polyethylene)

SEM image of HMPE

PE Chemical Formula

PE molecular chains

Molecular structure compared to p-Aramids

- Aramid molecules have straight rod-like structure even before polymer spinning into fiber;
- PE molecules are forced to have straight orientation in the fiber direction during spinning/stretching.

Normal PE vs. HMPE

Normal PE

- Low molecular weight
- Shorter molecular
 chains
- The molecules are not well-orientated and are easily torn apart

HMPE

- Ultra-high molecular weight
- Longer molecular chains
- To make strong fibers, the molecular chains are stretched, oriented and crystallised in the direction of the fiber

Orientation >95% Crystallinity >85%

Orientation low Crystallinity <60%

Unsuitability of melt spinning of HMPE

- Spinning is difficult because of extremely high melt viscosity
- Drawing is not efficient due to high entanglement of molecular chains

HMPE feedstock polymer for spinning

- Flexible PE polymer has a very weak interaction between the molecular chains
- Only the Van der Waals forces are active
- This interaction is so weak that for strong fibers, ultra-long chains with a high overlap lengths are required.
- Thus starting material for the high-performance polyethylene fibers is polyethylene with an average molecular weight of one million or more

Gel Spinning

- The molecules are dissolved in a solvent and spun through a spinneret.
- In the solution the molecules become disentangled and remain in that state after the solution is spun and cooled to give filaments.
- The term 'gel spinning' derives its name from the gel-like appearance of the dissolved polymer/solidified filament
- Because of its low degree of entanglement, the gelspun material can be drawn to a very high extent
- As the fibre is superdrawn, a very high level of macromolecular orientation is attained

Gel spinning

HMPE is dissolved in a solvent and then spun through small orifices (spinneret). Successively, the spun solution is solidified by cooling, which fixes a molecular structure which contains a very low entanglement density of molecular chain. This structure gives an extremely high draw ratio and results in extremely high strength. The gel-like appearance of the solidified fiber is the origin of the name of this technology. The highly drawn fiber contains an almost 100% crystalline structure with perfectly arranged molecules, which promotes its extremely high strength, modulus and other excellent properties.

Key HMPE Properties

- High strength and high modulus with low density (<1, floats in water)
- Extremely high specific strength and specific modulus because of low density
- Low melting point
- Hydrophobicity
- Biological inertness

Chemical Name	Polyethylene
Short Form	PE
Density [g/cm]	0,97
Melting Point (°C)	150
Main Trade Names	Dyneema (DSM)
	Spectra (Honeywell)

Reasons for high strength

- Ultra high molecular weight (> 1 million) polymer
- Ultra high spinning draw ratio (50-100 times)
- High molecular chain orientation
- High crystallinity

Tenacity

Stress-Strain Curve

Tenacity vs. Modulus

Specific Gravity

Weight and volume saving

Specific modulus

Free breaking length

Chemical Stability

TableResistance of fibres to various chemicals: 6months immersed at ambient temperature

	HPPE	Aramid
Distilled water	***	***
Sea water	***	***
10% detergent	***	***
Hydrochloric acid ($pH = 0$)	***	*
Nitric acid ($pH = 1$)	* * *	*
Glacial acetic acid	* * *	***
Ammonium hydroxide	* * *	**
Sodium hydroxide (pH > 14)	**	*
Petrol	* * *	***
Kerosene	* * *	***
Toluene	* * *	**
Trichloromethane	***	***

HMPE is sensitive to oxidizing media. In strongly oxidizing media, fibres will lose strength very fast.

*** Unaffected **slightly affected *seriously affected.

Resistance to acids and alkalis

pH Stability

Hydrophobicity

- HMPE is not hygroscopic
- It does not absorb water

Light Stability

UV Resistance

Contraction with Temp.

Toshihiro Kajima et al: Summary of lecture at Cryogenics · Superconductivity Society 245 (1991)

Heat Conductivity

Electrical Properties

Polyethylene is an insulator and has no groups with dipole character.

Volume Resistivity > 10^{14} Ωm Very Low dielectric loss factor (2x10)⁻⁴

- Low dielectric constant (2.2-2.5)
- As spun yarns contain a small fraction of spin oil of a hydrophilic nature. So, for applications where the electrical properties are important, the spin finish should be removed.

Dielectric Constant of different materials

Material	Min.	Max.
Air	1	1
Amber	2.6	2.7
Asbestos fiber	3.1	4.8
Bakelite	5	22
Barium Titanate	100	1250
Beeswax	2.4	2.8
Cambric	4	4
Carbon Tetrachloride	2.17	2.17
Celluloid	4	4
Cellulose Acetate	2.9	4.5
Durite	4.7	5.1
Ebonite	2.7	2.7
Epoxy Resin	3.4	3.7
Ethyl Alcohol	6.5	25
Fiber	5	5
Formica	3.6	6
Glass	3.8	14.5
Glass Pyrex	4.6	5
Gutta Percha	2.4	2.6
Isolantite	6.1	6.1
Kevlar	3.5	4.5
Lucite	2.5	2.5
Mica	4	9
Micarta	3.2	5.5

Material	Min.	Max.
Nylon	3.4	22.4
Paper	1.5	3
Paraffin	2	3
Plexiglass	2.6	3.5
Polycarbonate	2.9	3.2
Polyethylene	2.5	2.5
Polyimide	3.4	3.5
Polystyrene	2.4	3
Porcelain	5	6.5
Quartz	5	5
Rubber	2	4
Ruby Mica	5.4	5.4
Selenium	6	6
Shellac	2.9	3.9
Silicone	3.2	4.7
Slate	7	7
Soil dry	2.4	2.9
Steatite	5.2	6.3
Styrofoam	1.03	1.03
Teflon	2.1	2.1
Titanium Dioxide	100	100
Vaseline	2.16	2.16
Vinylite	2.7	7.5
Water distilled	34	78

The lower the value of the dielectric constant, the greater its resistance to the flow of an electrical current.

Dielectric Strength

The maximum electric field strength that an insulating material can withstand intrinsically without breaking down, *i.e.*, without experiencing failure of its insulating properties

Miscellaneous

Vibration damping

Dyneema® has excellent vibration damping characteristcs.

Insulation

Fundamentally a form of polyethylene, Dyneema® possesses the same chemical properties, making it an outstanding insulator.

Environment

As indicated by its chemical formula -(CH2-CH2)n- Dyneema® is formed from carbon(C) and hydrogen(H). Consequently, even if Dyneema® is burned all that remains is water (H2O) and carbon dioxide(CO2) and no harmful substances are released.

Coolness to Touch

Cut Resistance

Impact Strength & Energy Absorption

- Dyneema® SK60 has an extremely high impact strength.
- Extremely high amounts of energy absorption
- This property is utilized in products for:
 - · ballistic protection,
 - cut-resistant gloves
 - helmets

Fatigue

- Good fatigue resistance properties
- Carbon fibers may have high modulus but are brittle whereas HPPE is flexible and has longer flex life
- In **tension fatigue** testing, a rope is repeatedly loaded in tension and relaxation cycles
- In **bending fatigue or flex-life testing**, a loaded rope is moving over two or three sheaves

Abrasion Resistance and Flex Life

Dyneema® has excellent abrasion and fatigue resistance. Due to its ability to be processed easily. (weaving, knitting etc.), this leads to wide applications for industrial use.

Biological Resistance & Toxicity

- HMPE is not sensitive to attach by micro-organisms
- HMPE is considered as biologically inert fiber
 - · Suitable for medical applications

Thermal Properties

HMPE fiber has a melting point between 144°C and 152°C. The tenacity and modulus decrease at higher temperatures but increase at sub-zero temperatures. There is no brittle point found as low as -150°C, so the fiber can be used between this temperature and 70°C.

Figure: Influence of temperature on Dyneema® fiber breaking strength.

Flame Retardance

- LOI index lower than 20
- HMPE is thermoplastic, melts at about 150°C and decomposes over 300°C.
- Aramid fibres are thermosets, there is no melting point and gas emission starts at about 400°C.
- Polyethylene contains only carbon and hydrogen and no nitrogen or other hazardous chemical elements
 - Toxicity of the gases is relatively low

Compressive Yield Strength

In contrast to the high tensile strength, the gel-spun fibre has a low compressive yield strength, approximately 0.1 N/tex.

Viscoelasticity

- Polyethylene is a viscoelastic material, i.e.
- Its tenacity, tensile modulus and elongation at break depend on the temperature and the strain rate
- At high strain rates, or alternatively at low temperatures, both modulus and strength are significantly higher
 - · Important in ballistic protection

Creep

- The fibre is prone to creep;
- The deformation increases with loading time, resulting both in a lower modulus and a higher strain at rupture
 - · Important in ropes
- Creep is different in different fiber grades

Acoustic Properties

As with all mechanical properties, the acoustic properties are strongly anisotropic. In the fibre direction, the sound speed is much higher $(10 - 12x10^3 \text{ m/s})$ than in the transverse direction $(2x10^3 \text{ m/s})$.

Summary of HMPE Properties

Water and chemicals	
Moisture regain	zero
Attack by water	none
Resistance to acids	excellent
Resistance to alkalis	excellent
Resistance to most chemicals	excellent
Resistance to UV light	very good
Thermal	
Melting point	144–155 °C
Boiling water shrinkage	<1%
Thermal conductivity (along fibre axis)	20 W/mK
Thermal expansion coefficient	-12 $ imes$ 10 ⁻⁶ per K
Electrical	
Resistance	>1014Ohm
Dielectric strength	900 kV/cm
Dielectric constant (22°C, 10 GHz)	2.25
Loss tangent	$2 imes10^{-4}$
Mechanical	
Axial tensile strength	3 GPa
Axial tensile modulus	100 GPa
Creep (22°C, 20% load)	1 × 10⁻² % per day
Axial compressive strength	0.1GPa
Axial compressive modulus	100 GPa
Transverse tensile strength	0.03 GPa
Transverse modulus	3 GPa

Spider's silk: Typical tensile strength of Spider's silk

Dyneema Purity Typical tensile strength of Dyneema Purity

Applications: Ballistic Protection

oyant, resistant to UV

Boats and Ships

Helmets

Inserts

integrity when wet

a® is bu

sure, and maintains ballistic

Dyneema® offers the lightest strutter to-weight ratio available

Ballistic Shields

Applications: Safety Gloves

Applications: Ropes

- High Strength
- Light Weight

Mooring ropes made with HMPE are used to secure ultra-large ships in the 250.000t and 300.000t class to the port, such as ore carriers, crude oil tankers, LNG tankers. Also, that's the rope used by tug boats.

Applications: Fishing line/Cord

Applications: Sail Cloth Sail Cloth

Delivering the perfect balance of strength and weight, Dyneema® fiber is the ideal material for today's revolutionary new sail designs.

With low stretch characteristics that let sails retain an optimal shape and a pure white appearance that's resistant to abrasion, as well as chemicals, salt and UV rays. And that's why the sails' useful service life exceeds that of other materials- exponentially.

Applications: Nets

Applications: Fiber-reinforced cement (FRC) and Fiberreinforced plastic (FRP)

Applications: Unidirectional Laminates

Dyneema® Unidirectional (UD) technology is a composite laminate that provides excellent energy absorption and enhance protection at low weight.

The energy from an impact to be distributed along the fibers much faster and more evenly than

conventional, woven fabrics Dyneema® UD is ideal for personal protection applications (vests, helmets, and inserts) and vehicle armor of all types (land, air, and sea).

Dyneema Purity® SGX fiber: in Medtech

•15 times stronger than steel,

•40% stronger than aramids on a weight-by-weight basis

•3 times stronger than polyester on a volume basis

Dyneema Purity: Surgical Implants

- High strength and high modulus
- High pliability and softness
- Lower profile with equivalent strength
- Proven biocompatibility
- Non-hemolytic
- Cut resistant
- Low friction coefficient

Dyneema Purity in Cardiovascular Application

- Dyneema Purity[®] fiber allows predictable diameter throughout the entire length of the balloon, ensuring complete inflation.
- Strongest fiber in the world with little to no elongation.
- Excellent biocompatibility, enforcing non-compliance at high pressures while maintaining a low profile for better navigation.

Dyneema Purity in Ligament Repair

Applications: Cargo Containers

Air Cargo Containers

Air Cargo Nets

Next-generation air containers made with Dyneema® are redefining air cargo operations for customers like Lufthansa and DoKaSch. Composite panels and fabrics made from our flexible and ultralightweight materials are contributing to super-strong, durable containers that are up to 50% lighter than metals - reducing fuel and carbon emissions even further.

 Aluminium Air Cargo Container

50% less damage

 Air Cargo Container with Dyneema[®]

References

- 1. Stein, H. L. (1998). Ultrahigh molecular weight polyethylenes (uhmwpe). Engineered Materials Handbook, 2, 167–171.
- 2.D.W.S. Wong, W.M. Camirand, A.E. Pavlath J.M. Krochta, E.A. Baldwin, M.O. Nisperos-Carriedo (Eds.), Development of edible coatings for minimally processed fruits and vegetables. Edible coatings and films to improve food quality, Technomic Publishing Company, Lancaster, PA (1994), pp. 65–88
- 3. Tong, Jin; Ma, Yunhai; Arnell, R.D.; Ren, Luquan (2006). "Free abrasive wear behavior of UHMWPE composites filled with wollastonite fibers". *Composites Part A: Applied Science and Manufacturing* **37**: 38.
- 4. Budinski, Kenneth G. (1997). "Resistance to particle abrasion of selected plastics". *Wear*. 203–204: 302.
- 5. Steven M. Kurtz (2004). *The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement*. Academic Press. ISBN 978-0-12-429851-4.
- 6.http://chemyq.com/En/xz/xz4/39468nvyng.htm
- 7. Hoechst: Annealing (Stress Relief) of Hostalen GUR
- 8. Tensile and creep properties of UHMWPE fibres.
- 9.A.J. Pennings, R.J. van der Hooft, A.R. Postema, W. Hoogsteen, and G. ten Brinke (1986). "High-speed gel-spinning of ultra-high molecular weight polyethylene". *Polymer Bulletin* 16 (2–3): 167–174. doi:10.1007/BF00955487
- 10. "Dyneema". BodyArmorNews.com.
- 11. "Dyneema". Tote Systems Australia.
- 12. Lightweight ballistic composites: *Military and law-enforcement applications.* ed. A Bhatnagar, Honeywell International
- Monty Phan, Lou Dolinar (February 27, 2003). "Outfitting the Army of One – Technology has given today's troops better vision, tougher body armor, global tracking systems – and more comfortable underwear" (Nassau and Queens edition ed.). Newsday. pp. B.06.
- 14. Tom Moyer, Paul Tusting, Chris Harmston (2000). "Comparative Testing of High Strength Cord" (PDF).
- 15. "Cord testing" (PDF).
- 16. UHMWPE Lexicon. Uhmwpe.org.
- 17. GHR® HMW-PE and VHMW-PE. ticona.com
- 18. Cathodic Protection Cable Spreadsheet